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INTRODUCTION

The structure of each muscle consists of several motor units known as the 
smallest practical unit of muscle contraction. Each motor unit contains 

of a neural fiber (Motor neurons trunk, dendrites, axon, and numerous 
branches), as presented in Figure 1, all muscle fibers that have been inflicted 
on the nerve [1]. 

The muscle tissue is inactive when resting, but following the muscle 
contraction, an action potential is developed which increases the number of 
muscle fibers involved in the production of this potential. After the complete 
contraction of the muscle, these potentials of action appear in a group and 
with different domains. This bioelectric potential is the voltage caused by cell 
electrochemical activity, which can be transformed into an electrical voltage 
by a transducer [1] (Figure 2). Electrical activity of each cell can be considered 
as one of the most important biological parameters of cell survival. In other 
words, the human body can be viewed as an electricity generator, transmitting 
neural signals between the brain and organs by this electricity.

One of the types of bioelectric potentials is the Electromyogram signal 
(EMG). During the contractions of the muscle, this bioelectric signal 
generated by motor units, which represents the physiological and anatomical 
characteristics of the muscles [1-4].

This technology can be attributed to the application of engineering science to 
increase the convenience of people with various disabilities specially motion 
disabilities [5], which provide a broad field for research and development 
of alternative methods and tools associated with mobility and alternative 
communication [6]. Electromyography can be used to monitor daily activities 
[7-9] and in addition to displaying the levels and patterns associated with 
muscles activity, are also helpful in identifying the active or passive motions 
and the time or intensity of muscle activation [10,11].

One of the most important applications of this signal is the control of 
rehabilitation equipment (such as prostheses) [12], detection of patient’s 
movement in order to monitor the patient and emergency response [13,14], 
the creation of detection systems [15,16], and also provide intelligent 
assistance to the elderly and patients with Alzheimer’s and Parkinson’s 
disease [17,18].

The recording of this signal is done with two methods, surface EMG and 
intramuscular EMG. Due to non-invasive, non-anesthetic, easy to use and 
painless, surface EMG is more widely considered in conventional clinical 
applications [19]. This method is performed using silver/silver chloride 
electrodes on the skin (Body index points for surface electromyography 
are shown in Figure 3). These electrodes are electrically stable and have an 
appropriate SNR [20,21]. Multiple types of research have shown that this 

signal has an acceptable performance in movement analysis, prosthesis 
control, and the diagnosis of different states [22,23]. 

Electromyography has various techniques for detecting body movement 
[24,25], which are important in computer modeling and the design of 
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Figure 1) Motor unit structure [2]

Figure 2) A view of the potential action record [3]
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usually the amplitude of noises is greater than the original signal and their 
frequency is about 0-500 Hz (the most dominant is at 50 or 60 Hz (PLI) 
frequency) [36-38]. Off-line processing can remove this artifact [35]. Also, 
during signal processing, the actual signal is recognizing by the frequency of 
50 Hz and its four harmonics (100,200,300 and 400 Hz) [39].

Heart electrical activity

This interference is one of the most important components of EMG 
interference [40], which appears more in trunk muscle electromyography 
[41]. Although the removal of this artifact is very difficult, its effect will be 
greatly reduced by determining the exact location of the electrodes and the 
use of high-pass filter and common-mode rejection during the recording [42-
44].

Other cases of EMG noise include the effect of the activity of a muscle group 
(cross-talk), inherent instability and the inherent noise of the signal [11].

Importance of EMG simulator

To develop and validate bioelectric signal measurement systems, especially 
automated systems, there will be a realistic validation method. Although 
different parts of a measurement system, including hardware, software, and 
signal processing algorithms, are separately verified and validated, typically, 
the validity of the entire system as part of each phase increases reliability in 
the validation process. This validation requires that the sample bioelectric 
signals in the same way that are generated are given to the system and the 
output of the whole system is investigated. One of the validation methods 
for bioelectric systems is to use measurement cards that are controlled by the 
computer and highly expensive. If the system is constantly being developed, 
its validation in several stages will increase the cost of this test, but the costs 
can be significantly reduced with the help of a simple simulator. In this 
method, the signals recorded are modulated using a sine wave signal with 
a higher frequency (amplitude modulation). This modulation causes the 
signal frequency to be changed temporarily, which can prepare the signal to 
broadcast through the audio card and other audio devices. Again prior to 
entering this signal into the test system should be demodulated by a detector 
[45].

MATERIALS AND METHODS

By the graphical programming software, LabVIEW, which is known as a 
standard model in data collection and processing, simulation and control of 
various tools, we simulated an EMG Simulator. This software is a powerful 
and flexible tool for analyzing measurement systems. By using this software 
and PCs, real-time measurement systems can be simulated ritualistically.

Based on mentioned points, we designed a surface EMG simulator 
in LabVIEW software (Figure 4). This circuit simulates the surface 
electromyogram resulting from the isotonic contraction. During isotonic 
contraction, the length of the muscle is shortened, but the pressure on it 
stays constant. Isotonic contraction characteristics depend on the load on 
the muscle and the load inertia.

 

Figure 4) Block diagram of the sEMG simulator

normal movements of prostheses [26,27]. Although the role of these 
prosthetics in rehabilitation treatments is undeniable, due to the control of 
such prosthetics based on a sequential control strategy, normal movements 
require a long and complex process. Researches show that by relying more on 
EMG signals, such restrictions in these prostheses will be eliminated which 
require extensive research and testing [28]. The most suitable and safe way to 
design a variety of movements and planning to control these prostheses is to 
use an EMG simulator [29].

Figure 3) The index points in recording surface electromyography (sEMG) [33]

The Electromyogram signal is a random signal with different noises such as 
movement artifact and environmental noise [30,31]. Therefore, because of 
the complex patterns in it, its classification and analysis are very complicated 
and require different processing techniques [32]. Due to the interference 
of the EMG and noises, the real signal characteristics disappear. These 
specifications relate to tissue structure, skin temperature, and blood flow 
velocity in the target area [11]. Identifying all kinds of electromyographic 
noise is essential in the precise design of the simulator.

Inherent noise of electrodes

All electronic equipment generates noise at frequencies of 0 to several 
thousand Hz. This noise cannot be completely eliminated, but the 
improvement of the quality of electronic instruments and the design of 
intelligent circuits can greatly reduce its effect [11,33,34].

Increasing the size of the electrode, decreases its impedance. Also the quality 
of recorded signal and SNR greatly become better. But due to the effect of 
the activity of near muscles (cross-talk), during the recording signal the use of 
big electrode is not acceptable.

Motion artifact

In general, the motion artifact comes from two main sources. First, moving 
the cables connected to the electrodes and the amplifier can create this 
artifact. Also during the muscle activity, the length of the muscle decreases 
so this contraction causes the motion of skin and electrode. On the other 
hand, the difference between the potential of different layers of the skin can 
add noises to the recorded signal [35].

The frequency of these artifacts is about 0-20 Hz and recessed electrodes and 
a layer of conductive gel on the skin reduce their effects [35].

Electromagnetic interference

The electromagnetic sources near the EMG device cause noises in the signal, 
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In this circuit, at First a few parameters must be specified. Factors of the 
simulation signal including duration (s) and frequency (Hz), the modulation 
signal factors include the variance (in the range of 50 to 150), the alpha 
coefficient (in the range of 1 to 5) and sEMG signal factors including signal 
amplitude, noise domain variance and SNR (dB) are determined by the user. 
Then a Gaussian signal is produced randomly. Also, a Gaussian signal is 
shortened with a pulse signal to obtain suitable time intervals with smooth 
domain variations. 

In the following, the produced signals are added to the random Gaussian 
signal and the sEMG signal is generated. At last this signal passes from a 
band pass filter. The frequency range of this filter is a bout 20 - 450 Hz.

RESULTS AND DISCUSSION

First, we investigate the output of this simulator. As expected, the output of 
this software is a Real-Time signal and in comparison with the real EMG, has 
an adequate accuracy and precision (Figure 5).

 

Figure 5) The output of sEMG simulator

With the Modbus protocol in the LabVIEW software, this simulator can 
be connected to the hardware and it can provide an acceptable signal for 
software and hardware processing such as testing and calibrating the 
electromyography devices or creating the proper conditions for testing the 
controlled prostheses with EMG signal. 

Also, if needed, this software can calculate and display the various 
characteristics of the signal such as histogram and power spectrum diagrams. 

Finally, we can do the same work with a random Gaussian signal in MATLAB 
software. Then the generated signals transferring to hardware through the 
audio cards.

CONCLUSION

Electromyogram is a biomedical signal that contains valuable information 
about the anatomical and physiological characteristics of the muscles. This 
signal has many uses in the field of diagnosis, treatment and rehabilitation. 
Today, by EMG signal many motion disorders and disabilities are easily 
diagnosed and treated. On the other hand, in recent decades, new 
technologies in the field of rehabilitation such as cybernetic hands have 
attracted much attention to EMG signal. Because the use of this signal is 
easy and is an effective way of obtaining control commands.

Depending on the operation of the EMG devices, may have some problems. 
The most common problems with this device can be the signal’s obviousness, 
the device’s electronic bugs, and definitive communication wires.

So due to the importance of electromyogram signal, accuracy and precision 
of the electromyography device are very important and continuous testing 
and calibration of this device is essential. Also, the increasing development 
of new technologies based on EMG requires various and extensive testing 
in this regard. The most efficient and safe way to carry out these items is to 
use the EMG simulator. Considering the costs associated with the hardware 
simulators, it can be said that replacement of such software simulators is very 
cost effective and will be readily available at any location and time.
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